April 2010.

Please attempt all questions

1)Choose the most appropriate statement for each of the following statement

- a) for fully turbulent pipe flow the friction coefficient f is function of 1) Reynolds Re number only. 2) both Re and relative roughness ϵ/D . 3) ϵ/D only
- b) The condition for flow separation is 1) u = 0 at the wall. 2) shear stress τ is maximum. 3) $\frac{\partial u}{\partial v} = 0$ at the wall.
- c)The pressure increase due to sudden valve closure equals 1) $\rho V^2/2$ 2) ρV C 3) $2\rho V L/t_c$
- d) Valve closure is considered sudden if the closure time t_c is 1) <2L/C 2) < L/C 3) < 4L/C where L is pipe length and C is wave speed.
- e) For potential flow the 1) velocity is zero. 2) vorticity is zero. 3) viscosity is constant.
- f) Ideal flow around half body can be made by adding 1) source and sink. 2 Doublet and uniform flow. 3) Source and uniform flow.

	Delott the	nr .	Dam	$\Sigma \mathbf{k}$
Pipe	€/D	Lm	D cm	
1	0.002	50	20	2
2	0.002	30	20	1
3	0.002	40	20	3
J	0.0.		1	ag ahov

If these 3 pipes make a loop as shown, use Hardy Cross method to find the discharge in each pipe and the head at B and C. Assume the flow to be fully turbulent (check later)

3) A pipe line of length 3 km and diameter 50 cm with water velocity 3 m/s. The pipe is made of steel with Young modulus of elasticity E= 2.2 X 10¹¹ Pa. Water bulk modulus of elasticity K=2.2 G Pa and its kinematic viscosity $v = 10^{-6}$ m²/s Pipe wall thickness t=6 mm. The pipe is equipped with expansion joints throughout. Evaluate the speed of pressure wave C Find the amplitude of pressure increase if the valve is closed in 2 s.

$$C^2 = \frac{K/\rho}{1 + (K/E)(D/t)}$$

4) Use Navier -Stokes equation for 2-dimensional incompressible steady developed flow between two parallel fixed plates separated by a distance b to show that:

$$u = \frac{1}{2} \left(\frac{dpb^2}{dx\mu} \right) \left[\left(\frac{y}{b} \right)^2 - \left(\frac{y}{b} \right) \right]$$